Thintri Inc. announces the release of Markets in Wear Coatings: Hard Chrome and its Alternatives, 2013, a new update of its study on hard chrome in wear coatings and chrome replacement. This comprehensive examination of the subject discusses the various technologies, the industries in which they will, and won’t, be used, and forecasts to 2020.

Contents

Chrome Plating Industry
- Health & Environmental Issues
- Effects of Pollution Control Laws
- The Industry Today
- Economic Factors
- Drawbacks in Hard Chrome

Chrome Plating Target Market Analysis
- Aerospace
- Oil & gas
- Hydraulics & heavy machinery
- General industry
- Today’s economy
- Geographic segmentation

Chrome Plating Alternatives
- Trivalent chrome
- Plasma spray
- High velocity oxy-fuel (HVOF)
- Twin wire arc spray
- Electro-spark deposition
- Electroless nickel plating
- Electroless nickel boron plating
- Electroless nickel composite plating
- Electrodeposited nanocrystalline cobalt-phosphorus coatings
- Nickel-cobalt alloy coatings
- Plated tin alloys
- Explosive bonding
- Laser cladding
- Physical vapor deposition (PVD)
- Intensified plasma-assisted processing

Market Demand
2013–2020 forecasts
- Aerospace
 - Actuator hydraulics
 - Landing gear
 - Gas turbines
 - Other Components
- General industrial
 - Automotive
 - Agriculture
 - Pulp & paper
 - Transportation & roads
 - Mining
 - Heavy equipment
 - Oil & gas
 - Stamping & molding
Background on Wear Coatings

Used as a fundamental coating in a wide range of industries—aerospace, heavy equipment, automotive and others—hard chrome plating has become increasingly difficult in recent years. Regulations designed to protect against the health and environmental hazards of hexavalent chrome have increased the cost of chrome plating and burdened facilities performing plating services with extensive regulation and paperwork. At the same time, hard chrome’s intrinsic performance limitations have proven troublesome in wear applications where requirements are consistently more demanding.

A number of alternatives to hard chrome are available. Chrome substitutes are dominated by thermal spray, in particular high-velocity oxy-fuel (HVOF), often favored due to its high strength and wear resistance, relatively low cost, and fast turnaround time. However, other new processes are emerging and capturing chrome and HVOF markets as well. These include electroless nickel composite plating, which can deposit highly uniform diamond-composite coatings which are not restricted to line-of-sight geometries, as is HVOF. Other emerging techniques include explosive bonding, which can be used to fabricate stainless-steel or titanium coatings, and electrodeposited nanocrystalline cobalt-phosphorus alloys specifically targeted at inner diameters. Plasma vapor deposition (PVD) can make thin, high-quality coatings for less cost, in many cases, than even decorative chrome.

At one time many predicted a near abandonment of chrome plating to one or more of these new technologies but this has not happened. Indeed, in some markets, the adoption of thermal spray as an alternative to hard chrome has slowed. One reason is that some sectors, like aerospace, are almost fully converted to alternatives already. Another is that the initial enthusiasm for thermal spray as a chrome alternative has waned as its own limitations become more widely known. For that reason, while HVOF markets are still growing, many users are investigating other alternatives, including newer thermal spray processes as well as plating and vapor deposition.

The market picture is mixed and wildly uncertain. For both chrome and its substitutes, coating demand in the oil and gas sector is booming, thanks to new oilfield development techniques like fracking and horizontal drilling, while forestry and pulp & paper continue a precipitous, long-term decline.

And while industry downsizing and consolidation resulting from health and environmental legislation has led to the closure or offshore relocation of as many as half of the chrome plating shops in North America, the chrome plating market today is fairly stable. Most existing chrome plating shops, having accommodated new regulations, are now thriving and profitable. And many traditional customers have little or no interest in giving up on chrome.

Suppliers of alternative coating technologies are facing highly segmented markets where some chrome plating users resistant making large capital investments in new coating technologies, while others have eagerly embraced alternatives. Yet all face highly uncertain markets in the current economic climate, buffeted by wild swings in the cost of raw materials and lingering effects of the sluggish economy.

Understand the Markets

Success in wear coating markets will depend almost completely on a balance of cost and performance that will be highly application-specific. Many, if not most, chrome substitutes like thermal spray will require higher up-front costs, usually in the form of equipment purchases. However, longer lifetimes and reduced frequency of repairs can lead to significant long-term savings, not to mention the benefits of improved performance. Other alternatives offer a crossover benefit that depends on the scale of implementation or other factors. For example, PVD is more expensive than chrome for small lots but can be significantly less expensive in large-scale production. Most alternatives also offer a large advantage in reduced hazardous waste management costs compared to hexavalent chrome.

Thintri’s study Markets in Wear Coatings: Hard Chrome and its Alternatives examines each of the leading alternative technologies in detail: its capabilities, limitations and most promising applications. The report also explores their potential in major market segments and forecasts markets to 2020.

Order your copy today

$4500

Contact:
J. Scott Moore, Ph.D., President
Thintri, Inc.
914/242-4615
Fax: 914/666-4114
E-mail: smoore@thintri.com
Web: www.thintri.com
Tables and Figures

Table 2-1 Domestic Sodium Dichromate & Chromic Acid Production, US...20
Table 2-2 Typical Process Parameters for Chrome Plating, Conventional Bath...21
Table 2-3 Symptoms of Hexavalent Chromium Exposure Among Chrome Plating and Chromium Chemical Workers...22
Figure 2-1 Sources of Hexavalent Chromium Emissions, 2005...27
Figure 3-1 Worldwide Chrome Plating Demand, Hard vs. Decorative, 2013 ...33
Figure 3-2 Geographic Distribution, Hard Chrome Production, 2013 ..36
Figure 3-3 Geographic Distribution, Hard Chrome Production, 2020 ...36
Figure 3-4 Global Hard Chrome Market Breakdown, 2013 ...37
Figure 3-5 Aerospace Chrome Plating Market Segments, 2013 ...37
Figure 3-6 Aerospace Hard Chrome Markets, Commercial vs. Defense, 2013 ..38
Figure 3-7 Hard Chrome Demand Segmentation in Gas Turbines, Aerospace vs. IGT, 2013.................................40
Table 3-1 Industrial Hard Chrome Applications ..42
Figure 3-8 Overall Hard Chrome Market Forecast ..46
Figure 3-9 Aerospace Hard Chrome Markets Forecast ..47
Figure 3-10 Hard Chrome Market Forecast, Oil & Gas ..48
Figure 3-11 Overall Hydraulics & Heavy Equipment Hard Chrome Market Forecast ...49
Figure 3-12 Hydraulics Markets: Mining & Earth Moving vs. Forestry & Logging ..49
Figure 3-13 Market Forecasts: Agriculture, Waste & Recycling ...50
Figure 3-14 Market Forecasts: Construction, Concrete & Asphalt ...50
Figure 3-15 Market Forecasts: Defense & Government, Freight Transport ...51
Figure 3-16 Hard Chrome Market Forecast: Overall General Industry ...52
Figure 3-17 Forecasts: General Industry by Market Segment ...52
Table 5-1 Realistic Hard Chrome Target Markets, Global ...90
Figure 5-1 Overall Market Forecast, Plated and PVD Alternatives ...92
Figure 5-2 Market Forecasts for Plated and PVD Alternatives by Segment ...92
Figure 5-3 Thermal Spray Equipment vs. Consumables Market, 2013 ...96
Figure 5-4 Thermal Spray Powder Market Forecast, Oil and Gas Sector ...98
Figure 5-5 Thermal Spray Services Market Forecast, Oil and Gas Sector ...98
Figure 5-6 Forecast, Thermal Spray Powder, Mining & Earth Moving, Forestry & Logging100
Figure 5-7 Forecast, Thermal Spray Powder, Agriculture, Waste & Recycling ...100
Figure 5-8 Forecast, Thermal Spray Powder, Construction, Concrete & Asphalt ..101
Figure 5-9 Forecast, Thermal Spray Powder, Defense & Government, Freight Transport101

Figure 5-10 Forecast, Thermal Spray Powder, Overall Hydraulics and Heavy Equipment ...102
Figure 5-11 Forecast, Thermal Spray Services, Overall Hydraulics and Heavy Equipment102
Figure 5-12 Forecast, Thermal Spray Powder, General Industry by Segment ..105
Figure 5-13 Forecast, Thermal Spray Powder, Overall General Industry ...105
Figure 5-14 Forecast, Thermal Spray Services, Overall General Industry ..106
Figure 5-15 Defense vs. Commercial Aerospace Demand, Thermal Spray Powder, Wear Coatings, 2013109
Figure 5-16 Defense vs. Commercial Aerospace Demand, Thermal Spray Services, Wear Coatings, 2013110
Figure 5-17 Aerospace Thermal Spray Powder Demand, Manufacture vs. Repair ...111
Figure 5-18 Aerospace Overhaul & Repair, Thermal Spray Outsource vs. In-House, 2013 ..112
Figure 5-19 Thermal Spray Powder Demand Forecast, Landing Gear ..116
Figure 5-20 Thermal Spray Powder Demand Forecast, Aircraft Hydraulics ..117
Figure 5-21 Thermal Spray Powder Demand Forecast, Aircraft Gas Turbines ..119
Figure 5-22 Thermal Spray Powder Demand Forecast, IGTs ..121
Figure 5-23 Thermal Spray Powder Demand Forecast, Other Aerospace ..122
Figure 5-24 Thermal Spray Services Forecast, Overall Aerospace ..122
Figure 5-25 Overall Thermal Spray Wear Coatings Consumables Market Forecast ..124
Figure 5-26 Overall Market Forecast, Thermal Spray Services ..125
Table 5-2 Time Study Results, HVOF vs. Chrome Plating on a Landing Gear Piston ..127
Figure 5-27 Geographic Segmentation Forecast, Thermal Spray Powders, Wear Coatings130
Figure 5-28 Geographic Segmentation Forecast, Thermal Spray Equipment, Wear Coatings130
Figure 5-29 Thermal Spray Powder Market Segments by Coating Type, 2013 ..133
Figure 5-30 Overall Thermal Spray Wear Coating Powder Market Forecast ...133
Figure 5-31 Market Share, Carbide Powder Producers, 2013 ...135
Figure 5-32 Overall Thermal Spray Wear Coating Equipment Market Forecast ..136
Figure 5-33 Market Share, Thermal Spray Equipment Producers, 2013 ..136
Figure 5-34 Market Share, Plasma Spray Equipment Producers, 2013 ..137
Figure 5-35 Market Share, HVOF Equipment Producers, 2013 ...137
Figure 5-36 Market Share, Wire Arc Equipment Producers, 2013 ...138
Figure 5-37 Thermal Spray Segmentation and Forecast, Consumables ..139
Figure 5-38 Thermal Spray Segmentation and Forecast, Equipment ..140