Platinum Group Metals:

Issues and Opportunities

A Thintri MARKET STUDY

2018

Thintri, Inc. announces the release of **Platinum Group Metals: Issues and Opportunities**, a new market study that surveys current market conditions in platinum group metals (PGMs), and analyzes emerging demand, supply constraints and price volatility. The report also explores opportunities generated by new techniques of PGM recovery from previously-unused resources, and opportunities created by development of new, much less costly substitutes.

The report separates hype from reality and assesses the dramatically changing landscape facing PGM users and suppliers. Forecasts are supplied for demand and prices under current conditions going out to 2022, as well as an analysis of the effects of new technologies for PGM replacement and recovery.

Thintri Inc.

Thintri Inc. provides business and market intelligence for a wide range of technologies through custom consulting, technology assessments, and published market studies.

- Materials
- Electronics
- Telecommunications
- Photonics
- Manufacturing

Thintri Inc Business Intelligence · Technology Assessment

Contents

Background on PGMs

Sourcing and Suppliers

Applications

- Automotive and Transportation
- Electronics/Electrical
- Medical/Dental
- Industrial and Scientific
- Jewelry, Investment and Coinage

The Supply Side

- Potential Shortages and Supply
 Threats
- Response to Shortages
- Political Issues
- Long-Term Solutions

The Demand Side

- The Automotive Demand DriverThe Jewelry and Investment
- Demand Drivers
- The Petroleum Demand Driver
- Industrial Demand Drivers
- Medical/Biomedical/Dental
- Demand Drivers
- Other Demand Drivers
 PGM Demand by elem
 - PGM Demand by element
 - —Platinum
 - -Palladium
 - -Rhodium
 - -Iridium
 - —Ruthenium —Osmium
 - -Osmum
 - —Influence of Alternative Energy Schemes

Projected Price Trends

PGM Replacement

- Precious Metals and Reduced-PGM Alternatives
- PGM-Free and Reduced PGM
 Autocatalysts
- Alternatives Based on Conventional Chemistry
- Alternatives Based on Nanotechnology
- Electrolysis Catalyst Alternatives
- Impact of Alternatives on PGM
 Demand and Price

Scrap and Recovery

- Improved Recycling Schemes
- Slag and Mine Waste

Background on Platinum Group Metals

Platinum group metals (PGMs), namely platinum, palladium, rhodium, iridium, ruthenium and osmium, are rare, expensive and critical to today's economy. Up to now, there have been no other materials that can duplicate their performance in fundamental applications. Those applications include autocatalysts, the critical components in the catalytic converters found in most vehicles that reduce harmful emission; catalysts used in a broad range of industrial processes, including petroleum refining; hightemperature processing of abrasive materials such as glass; disc drives and electronic components; medical and dental implants and devices; and electrochemistry. Of course, selected PGMs are also highly prized in jewelry and investment.

Prices of PGMs are high and notoriously volatile. Rhodium, for example, went from slightly over \$6,000 per ounce in mid-2007, to \$10,000 per ounce in mid-2008 and then crashed to a little above \$1,000 before the end of that year. While this degree of fluctuation is exceptional, it's emblematic of the behavior of critical materials in limited supply, tied to broader economic forces like auto sales.

At this time of growing markets, the limits of supply are becoming clear. Like most natural resources, PGM supplies are inherently limited. Concerns about "peak metals," the idea that availability has peaked for limited resources and future production will be reduced and/or more costly (which has already occurred for a number of important minerals), will soon be an important influence with PGMs. Already, palladium has entered a period of supply uncertaintly and political destabilization.

Tightening of supplies comes at a time of accelerating demand. Growth of auto sales and industrialization in the developing world, particularly Brazil, Russia, India and China (the BRIC countries), as well as interest in PGM jewelry and investment by newly-prosperous populations, will place significant stress on available supplies. In addition, tightening environmental restrictions worldwide are forcing the use of more PGMs per vehicle to meet emissions rules. Furthermore, building of new oil refineries and industrial growth in a recovering economy will put further stress on supplies. Other demand drivers like medicine and petroleum, which are functions of aging populations and global economic shifts, will place stress on PGM supplies as well.

Analyses indicate that presently-known platinum reserves are sufficient for another 360 years at present rates of production and consumption. However, that estimate drops to 15 years if growing demand, particularly from growing industrialization and automobile sales in the developing world, is taken into account.

With demand growth, inelasticity of supply will likely force up prices in this decade dramatically.

The response to scarcity will no doubt include reduction in PGM consumption through "thrifting," i.e, the devising of ways to use less PGMs in established applications (which has been underway for decades). Also, rising prices will mean that deposits with lower PGM content such as those in Australia, which had been too costly to exploit in the past, will now be profitably mined, to some degree mitigating that price increase.

Another consequence will be the development of high performance, low cost alternatives, and in improved recycling and recovery.

Alternatives are sometimes as simple as substituting a less expensive PGM, such as palladium, for a more expensive one, such as platinum, although, as seen in 2017, this can force the price of palladium past that of platinum. The more significant alternatives use nanotechnology with inexpensive materials such as nickel, to fine tune the properties of nanoparticles by controlling parameters such as diameter. Inexpensive nanomaterials can substitute for PGMs in some of the most important markets, such as catalysts in the automotive and industrial markets. PGM usage in some applications, such as jewelry and electronics, is relatively immune from substitution, but most applications are vulnerable.

Recycling will become more important as PGM prices rise. Newly available technologies are able to dramatically improve the amount of PGMs that can be captured from recycled products such as catalytic converters.

Other recently developed processes are able to extract significant quantities of PGMs from mine waste that contains much higher PGM concentrations than the best quality ores. Mountains of slag and mine waste in North America and worldwide contain enough PGMs to significantly impact the supply/demand/price picture for PGMs once exploited.

Alternatives that can capture markets directly from PGMs, and new technologies that can dramatically improve PGM recovery from recycled materials and mine waste, are already commercially available or very near commercialization and will exert a growing influence on markets now owned by PGMs and PGM prices and availability.

The confluence of growing demand, limited and/or dwindling supplies, and growing availability of alternatives and new supplies will likely create a period of extraordinary volatility before things stabilize. Most of the time during the forecast period will witness the transition of established PGM markets as prices rise and users adjust to new conditions, while others take advantage of the new opportunities presented.

Understand the Opportunities

Platinum aroup metals are at an extraordinary intersection of market forces. Their rarity and expense has largely confined them to a limited set of markets. Those markets, in turn, are largely dependent on PGMs simply because there have been no viable, and cheaper, alternatives. The inelasticity of supply has led to occasionally extreme volatility in the past. Today, growing demand, fueled by a range of factors that include accelerating motor vehicle sales around the world, a rising industrial sector in the developing world and a growing consumer preference for white metals in jewelry, while supplies are relatively fixed and in some cases declining, threatens to put PGMs in an even more volatile situation. As demand exceeds available supplies, prices can be expected to rise significantly.

The Thintri market study, Platinum Group Metals: Issues and Opportunities, relies on in-depth interviews with industry executives, market development managers and government and academic researchers. The report provides a survey of the current state of the PGM markets, an assessment of viable alternatives and recovery schemes, and discussion of the effects of growing demand on availability and prices, and the effects on those prices of PGM replacement technologies and improved recovery methods.

Price: \$4,300

Contact:

J. Scott Moore, Ph.D., President Thintri, Inc. Mount Kisco, NY Phone: 914/242-4615 Fax: 914/666-4114 E-mail: smoore@thintri.com www.thintri.com

Report Contents

EXE	CUTIVE S	SUMMARY: PLATINUM GROUP METALS	1	
E.1	Introduc	tion	1	
E.2	Applicat	ions	1	
E.3	Supply,	Demand and Price Issues	2	
Figu	re E-1	Source Countries of PGMs	3	
Figu	re E-2	Platinum Demand Forecast, Autocatalysts	4	
Figu	re E-3	Palladium Price Forecast	5	
E.4	PGM Re	placement and Improved Recovery Methods	5	
Figu	re E-4	Total Rhodium Displaced by Alternatives	6	
Figu	re E-5	Resulting Rhodium Price, After Alternatives	7	
PAR	T 1 HIS	FORY & BACKGROUND	8	
1.1	Introduc	tion	8	
Tabl	e 1-1	Platinum Group Metals and Characteristics	8	
Figu	re 1-1	Periodic Table of the Elements with PGMs Highlighted	9	
Tabl	e 1-2	PGM Prices, September, 2017	10	
1.2	The Eler	nents	11	
	1.2.1	Platinum	11	
	1.2.2	Palladium	13	
	1.2.3	Rhodium	14	
	1.2.4	Iridium	15	
	1.2.5	Ruthenium	16	
	1.2.6	Osmium	17	
1.3	Sourcing	g	18	
	1.3.1	Extraction	18	
	1.3.2	Major Producers	19	
PAR	T 2 APP	LICATIONS	21	
2.1	Electron	ic components	21	
2.2	Medical	& Dental	23	
2.3	Industria	al and Scientific	24	
	2.3.1	General Industrial	24	
	2.3.2	Glass Manufacture	26	
	2.3.3	Scientific	27	
2.4		tive: Catalytic Converters, Spark Plugs Isors	28	
2.5	Jewelry		29	
2.6	Investm	ent and Coinage	31	
2.7	Catalyst	S		
	2.7.1	Catalysts: Industrial		
	2.7.2	Catalysts: Petroleum and Petrochemicals	34	
	2.7.3	Catalysts: Automotive	34	
	2.7.4	Catalysts: Fuel Cells	39	
Figu	re 2-1	PEMFC Fuel Cell Operation	40	
	PART 3 THE SUPPLY SIDE: PGM SUPPLIES, PEAK MATERIALS			
		PGM Sources		
	-			
i iyu	Figure 3-1 PGM Production by Country 45			

Figu	re 3-2	Platinum Production by Country	45
Figu	re 3-3	Palladium Production by Country	46
Figu	re 3-4	Other PGM Production by Country	46
3.2	Peak Me	etals & Scarcity	47
Table	e 3-1	Minerals That Have Already Peaked	48
3.3	Respons	se to Shortages	49
3.4	Lessons	from the 1970s Cobalt Crisis	50
3.5	Political	Issues	51
3.6	Today's	Price/Supply Threats	52
3.7	The Cas	e of Palladium	54
		DEMAND SIDE: MARKET GROWTH AND DS	59
4.1		tion	
4.2		pmotive Demand Driver	
1.2	4.2.1	The Automotive Market Today	
	4.2.2	Electric Vehicles and Their Impact	
	4.2.3	Outlook for the Future	
Fiau	re 4-1	Platinum Demand by Region,	
		Autocatalysts, 2018	65
Figu	re 4-2	Palladium Demand by Region, Autocatalysts 2018	65
Figu	re 4-3	Platinum Demand Forecast, Autocatalysts	66
Figu	re 4-4	Platinum Demand Forecast by Region, Autocatalysts	66
Figu	re 4-5	Palladium Demand Forecast – Autocatalysts	67
Figu	re 4-6	Palladium Demand Forecast by Region, Autocatalysts	67
Figu	re 4-7	Rhodium Demand Forecast, Autocatalysts	68
4.3	The Jew	elry and Investment Demand Drivers	68
Figu	re 4-8	Platinum Demand by Region, Investment and Jewelry, 2018	70
Figu	re 4-9	Palladium Demand by Region, Investment and Jewelry, 2018	70
Figu	re 4-10	Platinum Demand Forecast – Investment and Jewelry	71
Figu	re 4-11	Palladium Demand Forecast – Investment and Jewelry	71
4.4	The Petr	oleum Demand Driver	71
Figu	re 4-12	Platinum Demand by Region, Petroleum 2018	72
Figu	re 4-13 I	Platinum Demand Forecast, Petroleum	72
4.5		al: Chemical, Electrical, Electrochemical ss Demand Drivers	73
Figu	re 4-14	Platinum Demand by Region, Chemical and Glass 2018	73
Figu	re 4-15	Palladium Demand by Region, Chemical 2018	73
Figu	re 4-16	Platinum Demand Forecast, Chemical and Glass	74
Figu	re 4-17	Palladium Demand Forecast – Chemical	74

Figure 4-18	Rhodium Demand Forecast – Chemical and Glass	75
Figure 4-19	Platinum Demand Forecast, Electrical	
Figure 4-20	Palladium Demand Forecast – Electrical	
Figure 4-21	Rhodium Demand Forecast - Electrical	
Figure 4-22	Iridium Demand Forecast, Chemical,	70
rigule 4-22	Electrical and Electrochemical	77
Figure 4-23	Ruthenium Demand Forecast, Chemical, Electrical and Electrochemical	77
4.6 Medical,	, Biomedical and Dental Demand Drivers	77
Figure 4-24	Platinum Demand by Region, Biomedical 2018	78
Figure 4-25	Platinum Demand Forecast – Biomedical	78
Figure 4-26	Palladium Demand by Region, Dental 2018	79
Figure 4-27	Palladium Demand Forecast, Dental	79
4.7 Other Mo	arket Drivers	79
Figure 4-28	Platinum Demand by Region, Other Applications 2018	80
Figure 4-29	Palladium Demand by Region, Other Applications 2018	80
Figure 4-30	Platinum Demand Forecast, Other Applications	81
Figure 4-31	Palladium Demand Forecast, Other Applications	81
Figure 4-32	Rhodium Demand Forecast, Other Applications	82
Figure 4-33	Iridium Demand Forecast, Other Applications	82
Figure 4-34	Ruthenium Demand Forecast, Other Applications	83
4.8 PGM De	mand by Element	83
4.8.1	Platinum	83
Figure 4-35	Platinum Demand by Application, 2018	84
Figure 4-36	Platinum Demand by Region, 2018	84
Figure 4-37	Global Platinum Demand Forecast	85
Figure 4-38	Global Platinum Demand Forecast by Region	86
4.8.2	Palladium	86
Figure 4-39	Palladium Demand by Application, 2018	87
Figure 4-40	Palladium Demand by Region, 2018	87
Figure 4-41	Global Palladium Demand Forecast	88
Figure 4-42	Global Palladium Demand Forecast by Region	88
4.8.3	Rhodium	88
Figure 4-43	Rhodium Demand by Application, 2018	90
Figure 4-44	Rhodium Demand Forecast	90
4.8.4	Iridium, Ruthenium and Osmium	90
Figure 4-45	Iridium Demand by Application, 2018	91
Figure 4-46	Iridium Demand Forecast	91
Figure 4-47	Ruthenium Demand by Application, 2018	92
Figure 4-48	Ruthenium Demand Forecast	92
Figure 4-49	Osmium Demand by Application, 2018	93
Figure 4-50	Osmium Demand Forecast	93

4.9		of Alternative Energy Schemes and the en Economy
Fiau		Production of Hydrogen, Shares by Method
		CE TRENDS
		ion and Methodology
		Jp To Today
	.4 Platinum	
	5 Palladium	
		n
0	re 5-1	Recent Rhodium Price History
	2	d Price Trends
•	re 5-2	Price Trends, Platinum
•	re 5-3	Price Trends, Palladium
•	re 5-4	Price Trends, Rhodium
•	re 5-5	Price Trends, Iridium
0	re 5-6	Price Trends, Ruthenium
	re 5-7	Price Trends, Osmium111
		I REPLACEMENT 112
6.1		tion
6.2		s Metals as Alternatives and Reduced hemes113
	6.2.1	Precious Metal-Based Substitutes in Autocatalysts
	6.2.2	Jewelry116
6.3	PGM-Fre	ee and Reduced PGM Autocatalysts
	6.3.1	Alternatives Based on Conventional Chemistry 118
	6.3.2	Alternatives Based on Nanotechnology119
6.4	Electroly	vsis and Fuel Cell Catalyst Alternatives 122
	6.4.1	Research Progress
	6.4.2	Nanotechnology: Catalysts Based on Nanoparticles and Nanotubes
6.5	Impact o	of Alternatives on PGM Demand and Price
	6.5.1	Effects of Platinum Alternatives
Figu	re 6-1	Platinum Demand, Conventional Forecast
Figu	re 6-2	Platinum Demand Not Susceptible to Replacement
Figu	re 6-3	Autocatalysts: Platinum Displaced by Alternatives
Figu	re 6-4	Chemical: Platinum Displaced by Alternatives
Figure 6-5		Petroleum: Platinum Displaced by Alternatives 135
Figure 6-6		Total Platinum Displaced by Alternatives
Figure 6-7		Resulting Platinum Demand After Alternatives 136
Figure 6-8		Resulting Platinum Price, After Alternatives
Ŭ	re 6-9	Demand for Platinum Alternatives
5	6.5.2	Effects of Palladium Alternatives
Figu	re 6-10	Palladium Demand, Conventional Forecast
-		

Figure 6-11	Palladium Demand Not Susceptible to Replacement
Figure 6-12	Autocatalysts: Palladium Displaced by Alternatives
Figure 6-13	Chemical: Palladium Displaced by Alternatives
Figure 6-14	Total Palladium Displaced by Alternatives
Figure 6-15	Resulting Palladium Demand After Alternatives 140
Figure 6-16	Resulting Palladium Price, After Alternatives
Figure 6-17	Demand for Palladium Alternatives141
6.5.3	Effects of Rhodium Alternatives141
Figure 6-18	Rhodium Demand, Conventional Forecast141
Figure 6-19	Rhodium Demand Not Susceptible to Replacement
Figure 6-20	Autocatalysts: Rhodium Displaced by Alternatives
Figure 6-21	Chemical: Rhodium Displaced by Alternatives 143
Figure 6-22	Total Rhodium Displaced by Alternatives143
Figure 6-23	Resulting Rhodium Demand After Alternatives 144
Figure 6-24	Resulting Rhodium Price, After Alternatives
Figure 6-25	Demand for Rhodium Alternatives145
6.5.4	Effects of Alternatives in Hydrogen Fuel Cell Catalysis
Figure 6-26	Effect of Alternatives on PGM Demand in Hydrogen Fuel Cells146
PART 7. OPP	ORTUNITIES IN RECYCLING AND RECOVERY 147
	ORTUNITIES IN RECYCLING AND RECOVERY 147 tion
7.1 Introduc	
7.1 Introduc	tion147
7.1 Introduct7.2 Scrap &	tion
7.1 Introduc 7.2 Scrap & Table 7-1	tion
7.1 Introduct 7.2 Scrap & Table 7-1 7.2.1	tion
7.1 Introduct 7.2 Scrap & Table 7-1 7.2.1 7.2.2	tion
7.1 Introduct 7.2 Scrap & Table 7-1 7.2.1 7.2.2 7.2.3	tion
7.1 Introduct 7.2 Scrap & Table 7-1 7.2.1 7.2.2 7.2.3 Figure 7-1	tion
7.1 Introduct 7.2 Scrap & Table 7-1 7.2.1 7.2.2 7.2.3 Figure 7-1 Figure 7-2	tion
7.1 Introduct 7.2 Scrap & Table 7-1 7.2.1 7.2.2 7.2.3 Figure 7-1 Figure 7-2 Figure 7-3	tion
7.1 Introduct 7.2 Scrap & Table 7-1 7.2.1 7.2.2 7.2.3 Figure 7-1 Figure 7-2 Figure 7-3 Figure 7-4	tion
7.1 Introduct 7.2 Scrap & Table 7-1 7.2.1 7.2.2 7.2.3 Figure 7-1 Figure 7-2 Figure 7-3 Figure 7-4 Figure 7-5	tion
7.1 Introduct 7.2 Scrap & Table 7-1 7.2.1 7.2.2 7.2.3 Figure 7-1 Figure 7-2 Figure 7-3 Figure 7-4 Figure 7-5 Figure 7-6	tion

Figure 7-10	Realized Scrap Volume: Rhodium, Electrical, Glass & Other	59
Figure 7-11	Unrealized Scrap Volume: Rhodium, Autocatalysts & Chemical1	60
Figure 7-12	Unrealized Scrap Volume: Rhodium, Electrical, Glass & Other1	60
Figure 7-13	Realized Scrap Volume: Iridium 1	61
Figure 7-14	Unrealized Scrap Volume: Iridium 1	61
Figure 7-15	Realized Scrap Volume, Ruthenium 1	62
Figure 7-16	Unrealized Scrap Volume, Ruthenium 1	62
7.3 Slag and	d Mine Waste 1	62
Figure 7-17	PGM Slag Recovery, North America 1	63
Figure 7-18	Slag Recovery, North America, by Metal 1	64
Figure 7-19	PGM Slag Recovery, Rest of World 1	64
Figure 7-20	Slag Recovery, Rest of World, by Metal 1	65
Figure 7-21	New PGM Supply with Improved Recovery: Platinum, Palladium, Rhodium1	65
Figure 7-22	New PGM Supply with Improved Recovery: Iridium, Ruthenium, Osmium1	66
	Improved Recycling and Slag Recovery on ices1	66
Figure 7-23	Conventional Price Forecast: Platinum, Palladium, Rhodium1	67
Figure 7-24	Conventional Price Forecast: Iridium, Ruthenium, Osmium1	67
Figure 7-25	Prices, with Improved Recovery: Platinum, Palladium, Rhodium1	68
Figure 7-26	Prices with Improved Recovery: Iridium, Ruthenium, Osmium 1	68
	rm Supply Solutions: Near-Earth Asteroid	
Mining	1	68